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Abstract

We investigate the problem of controlling the probability density of the state of a process that is

observed by the controller via a fixed but unknown function ofthe state. The goal is to control the

process so that its probability density at a point in the state space becomes proportional to the value

of the function observed at that point. Our solution, inspired by bacterial chemotaxis, involves a ran-

domized controller that switches among different deterministic modes. We show that under appropriate

controllability conditions, this controller guarantees convergence of the probability density to the desired

function. The results can be applied to the problem of in locooptimization of a measurable signal using

a team of autonomous vehicles that use point measurements ofthe signal but do not have access to

position measurements. Alternative applications in the area of mobile robotics include deployment and

environmental monitoring.

Index Terms

Piecewise-deterministic Markov processes, mobile robotics, hybrid systems

I. INTRODUCTION

This paper addresses the control of a Piecewise-Deterministic Markov Process (PDP) through

the design of a stochastic supervisor that decides when switches should occur and to which mode

to switch. In general, the system’s statex cannot be measured directly and is instead observed
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through an outputy = g(x), whereg(·) is unknown to the controller. The control objective is

to achieve a steady-state probability density for the statex that matches the unknown function

g(·) up to a normalization factor.

We were motivated to consider this control objective by problems in the area of mobile

robotics. In this type of applications,x typically includes the position of a mobile robot that

can take point measurementsy = g(x) at its current location. Indeployment applications, a

group of such robots is required to distribute themselves inan environment based on the value

of these measurements, e.g., the measurements may be the concentration of a chemical agent

and one wants the robots to distribute themselves so that more robots will be located in areas of

higher concentration of the chemical agent. Insearch applications, a group of robots is asked to

find the point at which the measurement has a global maximum (or minimum), in which case

one wants the probability density function ofx to have a sharp maximum at the pointx where

g(x) is maximum (or minimum). These applications are often referred to as “source seeking”

motivated by scenarios in which the robots attempt to find thesource of a chemical plume,

where the concentration of the chemical exhibits a global maximum. Finally, in monitoring

applications, one attempts to estimate the value of a spatially-defined function by keeping track

of the positions of a group of robots whose spatial distribution reflects the spatially-defined

function of interest (much like in deployment applications). Potential applications for this work

thus include chemical plant safety, hydrothermal vent prospecting, pollution and environmental

monitoring, fire or radiation monitoring, etc.

The control algorithms proposed here are motivated by the chemotactical motion of the

bacteriumE. coli. Being unable to directly sense chemical gradients becauseof its reduced

dimensions, this organism is still able to follow the gradient of a chemical attractant, despite the

rotational diffusion that constantly changes the bacterium orientation. This is accomplished by

switching between two alternate behaviors known asrun and tumble[1], [2]. In the run phase,

the bacterium swims with constant velocity by rotating its flagella in the counter-clockwise

direction. In the tumble phase, by rotating its flagella in the clockwise direction, the bacterium

spins around without changing its position and in such a way that it enters the next run phase

with arbitrary orientation. Berg and Brown [1] observed that the only parameter that is affected

by the concentration of a chemical attractant is the duration of runs. Roughly speaking, the less
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improvement the bacterium senses in the concentration of the attractant during the run phase,

the more probable a direction change (tumble) becomes. Sucha motion leads to a distribution

whose peak usually coincides with the optimum of the sensed quantity, much like the search

applications in mobile robotics mentioned above.

The parallel betweenE. coli’s chemotaxis and some search problems involving autonomous

vehicles is quite remarkable: In mobile robotics, gradientinformation is often not directly

available, either because of noisy and turbulent environments or because the vehicle size is

too small to provide accurate gradient measurements, challenges also faced byE. coli. This

bacterium also does not have access to global position information, which is analogous to the

lack of position measurements that arise in applications for which inertial navigation systems

are expensive, GPS is not available or not sufficiently accurate (as in underwater navigation

or cave exploration), or the vehicles are too small or weight-constrained to carry this type

of equipment. These observations led us to design a biologically-inspired control algorithm for

autonomous vehicles, namedoptimotaxis[3]. While mimicking chemotaxis is not a new solution

to optimization problems, see e.g. [4], [5], [6], [7], [8], optimotaxis is distinct in that we are

able to provide formal statements about the stationary density and the convergence to it.

In this paper, we show that the principles behind optimotaxis can be used in the much more

general setting of controlling the probability density function of a PDP through the design of

a stochastic supervisor that decides when switches should occur and to which mode to switch.

We establish controllability/reachability results for this problem and provide a controller that,

under the appropriate controllability conditions, guarantees the ergodicity of the desired invariant

density. As a consequence, the probability density of the PDP converges to the desired invariant

density in the Cesàro sense and results like the Law of LargeNumbers apply. In addition, we

provide general results that have wide application in the study of ergodicity in PDPs, beyond

the specific control design problem addressed in this paper.

Although the control of probability densities is still an incipient subject in the control literature,

a substantial body of related work can be found in the literature of Markov Chain Monte Carlo

(MCMC) methods [9]. These methods use a Markov chain to sample from a known (but usually

hard to compute) distribution and then estimate integrals associated with that distribution. MCMC

is largely used in statistical physics and in bayesian inference. In fact, our method can be regarded
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as an instance of a dynamical/hybrid Markov Chain Monte Carlo method [10]. In particular, the

hit-and-runmethod [11] resembles optimotaxis in that it also executes apiecewise linear random

walk. The main difference between optimotaxis and traditional MCMC is that samples can be

discarded in MCMC, which is not possible in our case due to thephysical nature of the process.

This paper is organized as follows: the description of the problem is given in Section 2; Section

3 provides some auxiliary results on Markov processes that are useful in the control design and

stability proofs; the proposed controller is described in Section 4; examples are given in Section

5; conclusions and final comments are given in Section 6.

II. PROBLEM DESCRIPTION

Initially, we briefly describe the concept of Piecewise-Deterministic Markov Processes (PDP)

that is used in the paper, following closely the framework introduced in [12]. In a PDP, state

trajectories are right continuous with only finitely many discontinuities (jumps) on a finite

interval. The continuous evolution of the process is described by a deterministic flow whereas

the jumps occur at randomly distributed times and have random amplitudes.

We consider state variablesx ∈ Ω := R
d and v ∈ V , whereV is a compact set. During

flows, x(t)1 evolves according to the vector fieldf(x, v), whereasv(t) remains constant and

only changes with jumps. For a fixedv ∈ V , we denote byϕv
tx the continuous flow at timet

defined by the vector fieldf(·, v) and starting atx at time0. The conditional probability that a

jump occurs between the time instantst ands, 0 < s < t, givenx(s) andv(s), is

1 − exp

(

−

∫ t

s

λ(ϕ
v(s)
τ−sx(s),v(s))dτ

)

, (1)

whereλ(x, v) is called thejump rateat (x, v) ∈ Ω × V . At each jump,v assumes a new value

given by thejump pdf Tx(·,v−). Thus, if a jump occurs at timetk, thenT
x(tk)

(

v,v−(tk)
)

is the

probability density ofv(tk) at v givenx
−(tk) andv

−(tk), where the superscript minus indicates

the left limits of the respective processes.

This PDP model is captured by several stochastic hybrid system models that appeared in the

literature, including our stochastic hybrid models discussed in [13], or the hybrid models initially

proposed in [14] by Hu, Lygeros and co-workers and further expanded in a series of subsequent

papers [15]. Fig. 1 depicts a schematic representation of our PDP.

1We use boldface symbols to indicate random variables.
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ẋ = f(x,v)

v̇ = 0

λ(x,v)

v ∼ T
x
−(·,v−)

Fig. 1. Hybrid automaton for the PDP

We definep(x, v, t) as the joint probability density of the state(x, v) at time t. Here it is

important to explicit the structure of the parameter spaceV . We considerV to be a compact

subset of a locally compact separable metric space equippedwith a Borel measureν such that

ν(V ) = 1. Note that, as opposed to [12], we do not requireV to be countable. This more general

setting for PDP’s is supported by the theory developed in [11]. Denoting bym the Lebesgue

measure inΩ, we have that
∫

Ω×V
p(x, v, t) dm× dν = 1, ∀t ≥ 0. We denote byL1(Ω× V ) the

space of real functions integrable with respect tom× ν.

In our setting, the vector fieldf is a given and the jump rateλ and the jump pdfTx are

control parameters. The controller cannot measure the state x directly; instead, an observation

variabley(t) = g(x(t)) is given. In general, the functiong(x) is not known to the controller,

which only has access toy(t).

Assuming thatg(x) is nonnegative and integrable, our objective is to designλ and T such

that a randomized controller will selectv(t) as a function of the observations{y(τ); 0 ≤ τ ≤ t}

collected up to timet so that the marginal
∫

V
p(x, v, t)dν(v) converges tocg(x), where c is

a normalizing constant chosen so thatcg(x) integrates to one. As it will be clear later, it is

not necessary for the controller to know the normalizing constantc in order to implement the

proposed control law.

In practice,g(x) is a chosen function of some physical measurementsF (x). For example, we

can selectg(x) = Q(F (x)), where the functionQ(·) is a design parameter used to guarantee

thatQ(F ) is nonnegative and integrable. The functionQ(·) may also be used to accentuate the

maxima ofF . For example, if the physical measurement corresponds toF (x) = 1 − ‖x‖2, a
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reasonable choice forQ(·) that leads to a nonnegative integrable function is

Q(F ) =

{

F , if F > δ

δeF−δ , if F ≤ δ
, (2)

for someδ > 0. Alternatively, if one is mainly interested in the positionof the maxima ofF (x),

a possible choice forQ(·) is given by

Q(F ) = F n , (3)

for somen > 1, provided thatF n is already nonnegative and integrable [if not one could also

useQ to achieve this, as it was done in (2) above].

III. SOME FUNDAMENTAL RESULTS IN STOCHASTIC HYBRID SYSTEMS

In this section we provide a few key results on the invariant probability densities of our

PDP. The first result provides a generalized Fokker-Planck-Kolmogorov equation that governs

the evolution of probability densities. We assume throughout the text that the vector fieldf is

continuously differentiable onΩ × V , that there is no finite escape time, and that only a finite

number of jumps occur in finite time intervals.

Theorem 1 ([16]). If there exists a pdfp(x, v, t) for (x(t),v(t)) that is continuously differentiable

on Ω× V ×R
+, then it satisfies the following generalized Fokker-Planck-Kolmogorov equation:

∂p

∂t
+ ∇x · fp = −λp+

∫

V

Tx(v, v
′)λ(x, v′)p(x, v′, t)dν(v′) , (4)

where the divergence operator∇x · is taken with respect to the variablex only.

When f(x, v) = v, (4) has an important role in linear transport theory, whereit models

particles moving with constant velocity and colliding ellasticly [17], [18]. In this case, regarding

p as the density of particles, (4) has a simple intuitive interpretation: on the left-hand side we

find a drift term∇x · vp corresponding to the particles straight runs, on the right-hand side we

find an absorption term−λp that corresponds to particles leaving the state(x, v), and an integral

term corresponding to the particles jumping to the state(x, v).

Equation (4) will be used in our control design to determine ajump rateλ and a jump pdf

Tx such that the joint invariant density of the process [which is obtained by setting∂p/∂t = 0
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in (4)] corresponds to an invariant marginal distribution
∫

V
p(x, v, t) dν(v) that is proportional

to g(x). In fact, it will even be possible to obtain ajoint invariant distributionp(x, v, t) that

is independent ofv, therefore also proportional tog(x). For simplicity of presentation, in the

sequel we assume thatg(x) has been scaled so that
∫

g(x)dx = 1 and thereforeg(x) is already

the desired invariant distribution. However, none of our results require this particular scaling.

A. Elements of the Ergodic Theory for Markov Chains

Once we derive control laws that result in the desired invariant density, it will be necessary

to verify whether or notp(x, v, t) actually converges to it from an arbitrary initial distribution.

For this purpose, we present some results from ergodic theory that are useful to characterize the

convergence of our PDP. Because ergodic theory is more thoroughly developed for discrete-time

processes, we first state the results for a general discrete-time Markov chain and then show how

to adapt them to continuous time. A second reason for discussing discrete-time processes is that,

in practice, measurements are sampled at discrete time instants thus defining a discrete-time

process.

Consider a general discrete-time Markov chain{ξk} on the measurable space(Y ,B), where

Y is a locally compact separable metric space andB is the corresponding Borelσ-algebra. The

chain is defined using thetransition probability functionP :

P (y, B) = Pr{ξk+1 ∈ B|ξk = y} , (5)

for all y ∈ Y , B ∈ B andk ≥ 0. We say thatµ is an invariant probability measurefor P if, for

everyB ∈ B,

µ(B) =

∫

Y

P (z, B)dµ(z) . (6)

A setB ∈ B is said to beinvariant with respect toP if P (x,B) = 1 for all x ∈ B. An invariant

probability measure is said to beergodic if, for every invariant setB, µ(B) = 0 or µ(B) = 1.

The following version of the law of large numbers for Markov chains will allow us to conclude

that ergodicity of the invariant measure is sufficient to allow us to estimateg(x) by sampling

x(t) over time.
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Theorem 2 ([19],Thm. 5.4.1). Suppose thatµ is ergodic. Then, there exists a measurable set

Y ′ ⊂ Y such thatµ(Y ′) = 1 and, for every initial conditiony ∈ Y ′,

n−1
n−1
∑

k=0

ψ(ξk) →

∫

Y

ψ dµ a.s. (7)

for every test functionψ ∈ L1(µ).

By applying Theorem 2 to polynomial test functionsψ, one concludes that the time averages

that appear in the left-hand side of (7) can be used to construct consistent estimators for the

moments of the stationary measure of the process. Further, this result also provides a methodology

to construct a consistent estimator for the invariant measure itself. To achieve this, we define

the empirical measureµ(n) by

µ(n)(B) = n−1
n−1
∑

k=0

1B(ξk) (8)

for everyB ∈ B, where1B is the indicator function of the setB. Thus, since the left-hand

side of (7) is equal to the expected value ofψ with respect to the empirical measureµ(n), we

have that (7), when restricted to the set of bounded continuous test functions, gives precisely

the definition of weak convergence ofµ(n) to µ [19]. We formulate this result in the following

corollary.

Corollary 1. If µ is an ergodic measure, then the empirical measureµ(n) converges weakly to

µ almost surely for every initial condition inY ′.

By taking the expectation in Corollary 1 we have that also thelaw of the process converges

weakly to µ in the Cesàro sense (i.e., convergence of the partial averages). In this paper

convergence of measures will only be considered in the Cesàro sense. Even though some results

in the paper can be proven for convergence in total variation, we have limited practical interest

in this type of convergence so we will not prove it here.

For continuous-time processes{θt}, one can analogously consider a transition probability

Pt(y, B) = Pr{θt ∈ B|θ0 = y} and then define invariant measures and invariant sets as those

that are invariant underPt for all t ≥ 0. The definition of an ergodic measure remains the same

as above. Given the existence of an ergodic measure, one can state ergodic theorems analogous

to the one above provided that a continuity condition forPt is satisfied [20]. For our PDP, in
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particular, one concludes that, if we construct a control law under whichg(x) defines an ergodic

measureµ for the PDP, then the probability measurePt(y, ·) for (x(t),v(t)) converges weakly

to µ in the Cesàro sense for almost all initial conditiony in the support ofg(x). Moreover, for

every initial probability densityp(x, v, 0) absolutely continuous with respect tog(x), the Cesàro

averaget−1
∫ t

0
p(x, v, s) ds converges tog(x) in total variation.

In practice, more important than the convergence in continuous time is the convergence of

the sampled processes. For the continuous-time process{θt}, let {ξk} := {θτk
} be the process

defined by sampling{θt} at a sequence of times{τk}, whereτk → ∞ a.s. ask → ∞. We say

that a sampled chain{ξk} is well-sampledif {θk} and {ξk} have the same ergodic measures.

We can formulate the following corollary for well-sampled chains.

Corollary 2. If µ is an ergodic measure for{θt}, then the conclusions in Theorem 2 hold for

every well-sampled chain{ξk}.

Thus, we can use well-sampled chains to recover the steady-state statistics of continuous-time

processes. Notice, however, that periodic sampling schemes do not always produce well-sampled

chains. Suppose thatµ is an ergodic measure for{θt}. If τk = kT1, for some positive constant

T1, thenPT1 is the corresponding transition probability for{ξk} andµ is an invariant measure

for PT1, but µ is not necessarily ergodic. In fact, invariant sets forPT1 may not be invariant for

Pt for all t > 0. We say that the process isaperiodicif, for all T1 > 0, the invariant measures for

PT1 are also invariant forPt for all t > 0. Clearly, for aperiodic processes, the process sampled

according toτ(k) = kT1 is well-sampled.

All the cases we deal with in this paper involve aperiodic processes. Indeed, we derive

controllability conditions that in a way demand aperiodicity. Yet, if one has to sample from

a periodic process, it is possible to generate well-sampledchains by sampling at random times.

For example, a well-sampled chain would be obtained if the sample times are chosen such that,

for k ≥ 0, τk+1 − τk are i.i.d. random variables with finite mean and probabilitydistribution

absolutely continuous with respect to the Lebesgue measure(see [21, Lemma 2.2]).

B. Ergocity for the PDP

The next result provides a sufficient condition for the ergodicity of the invariant measures

of our PDP. Here, we calljump Markov chainthe chain defined by the jumps alone, that is,

September 3, 2009 DRAFT



10

our PDP when the vector fieldf is set to0. We say that the jump Markov chain isirreducible

for a fixed x ∈ Ω if, for every initial condition v ∈ V and everyA with ν(A) >0, there

is a positive probability thatA will be eventually reached fromv. We say that a measurable

function ψ : Ω × V → R is path-continuous(path-differentiable) if ψ(ϕv
tx, v) is a continuous

(continuously differentiable) function oft for all (x, v).

Assumption 1. i. the jump Markov chain is irreducible∀x ∈ Ω.

ii. f is continuously differentiable inx and continuous inv.

iii. λ(x, v) is uniformly bounded onΩ × V and, for any bounded and path-continuousψ it

holds that

t 7→ λ(ϕv
tx, v)

∫

V

Tϕv
t
x(v

′, v)ψ(ϕv
tx, v

′) dν(v′) (9)

is continuous.

iv. span{f(x, v); v ∈ V } = Ω, ∀x ∈ Ω.

Theorem 3. Under Assumption 1, suppose that there exists an invariant probability measure for

the PDP, then this measure is ergodic.

We note that conditioniv can be relaxed as done in Example 2. Under the conditions of the

theorem, one can replace the weak convergence results for the law of the process in the previous

subsection by the stronger notion of convergence in the total variation norm. For that purpose,

one can use the Phillips expansion to show that the PDP is a T-process [22]. Then the restriction

of the process to the ergodic classes is a Harris process and convergence in total variation follows

[23].

C. Proof of Theorem 3

For a bounded measurable functionψ : Ω× V → R, we define thetransition operatorof our

PDP to be

Ptψ(x, v) = E(x,v)ψ(x(t),v(t)) , (10)

whereE(x,v) denotes the expectation with respect to the initial condition (x, v) at time0. Given

an invariant measureµ for the PDP, a functionψ ∈ L1(µ) is said to beinvariant with respect

to µ if Ptψ = ψ µ-a.e. for allt > 0.
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A key result that we use to establish ergodicity of an invariant measure is the fact thatµ is

ergodic if and only if every function that is invariant with respect toµ is constantµ-a.e. [19,

Lemma 5.3.2]. Lemma 1 below provides two key properties of the invariant functions of our

PDP. Namely, it states that invariant functions must be invariant both under flows and jumps. We

will see later that, under certain conditions, only constant functions can be invariant under flows

and jumps for our PDP. This will show that all invariant functions are constant and therefore

thatµ is ergodic.

Lemma 1. Let µ be an invariant probability measure for the PDP and letγ ∈ L1(µ) be an

invariant function with respect toµ . Then, under Assumption 1 (iii),

γ(ϕv
tx, v) = γ(x, v) ∀t > 0, µ(dx, dv)-a.e. (11)

and

γ(x, v) = γ(x, v′) ν̄(dx, dv, dv′)-a.e. , (12)

where ν̄(dx, dv, dv′) = λ(x, v)Tx(v, v
′)ν(dv′) × µ(dx, dv).

The proof of Lemma 1 is presented in the appendix.

Proof of Theorem 3:

Let µ denote the invariant measure and letγ ∈ L1(µ) be invariant underPt. From Assumption

1 (iii ) we have that Lemma 1 applies. Since by Assumption 1 (i) the jump Markov chain

is irreducible, we have from Lemma 1 thatγ does not depend onv µ-a.e. Without loss of

generality, letγ be such that it does not depend onv on suppµ and such that (11) holds on

supp µ.

Given (x0, v0) ∈ suppµ, let {(x0, vi)} ∈ suppµ be such that span{f(x0, vi), i = 1, . . . , d} =

R
d, which is possible due to Assumption 1 (ii ) and (iv). For τ := (t1, . . . , td) ∈ R

d, let y =

ϕvd

td
◦ · · · ◦ ϕv1

t1
x0. Then, from Assumption 1 (ii ) we have that

∂y

∂τ

∣

∣

∣

∣

τ=(0,...,0)

= [ f(x0, v1) . . . f(x0, vd) ] . (13)

Sincedet
(

∂y

∂τ
(0, . . . , 0)

)

6= 0, there exists a neighborhoodBr(x0) such that everyy ∈ Br(x0)

can be written asy = ϕvd

td
◦ · · · ◦ϕv1

t1
x0 for someτ ∈ R

d. Becauseµ is invariant,y ∈ supp µ and

(11) in Lemma 1 implies that

γ(ϕvd

td
◦ · · · ◦ ϕv1

t1
x0) = γ(x0) , (14)
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where the dependence onv was omitted. From (14), we have thatγ is constant inBr(x0). Since

x0 ∈ S is arbitrary,γ must be constantµ-a.e. Thus, as commented above,µ is ergodic by [19,

Lemma 5.3.2].

IV. CONTROL DESIGN

In this section we provide a family of control laws that achieve our objective.

A. A Controllability Condition

We start with a controllability analysis that provides necessary and sufficient conditions under

which a steady-state solutionp(x, v, t) = h(x, v), ∀(x, v) ∈ Ω× V and t > 0, may be enforced.

Naturally, we assume that
∫

Ω×V
h dm× dν = 1.

Theorem 4. Given a densityh(x, v) > 0, ∀(x, v) ∈ Ω × V , with ∇x · fh ∈ L1(Ω × V ), there

exists a jump intensityλ and a jump pdfTx such thath is an invariant density for the PDP if

and only if
∫

V

∇x · fh(x, v) dν(v) = 0, ∀x ∈ Ω . (15)

Moreover, when this condition is verified, the PDP has the desired invariant distributionh for

a uniform jump distributionTx(v, v
′) = 1, ∀x, v, v′ and a jump intensity

λ(x, v) =
α(x) −∇x · fh(x, v)

h(x, v)
, (16)

whereα(x) can be any function for whichλh is nonnegative and integrable.

To prove Theorem 4, it is convenient to define the following integral operator:

Kψ =

∫

V

Tx(v, v
′)ψ(x, v′) dν(v′) (17)

ψ ∈ L1(Ω× V ). This operator allows us to rewrite the Fokker-Planck-Kolmogorov equation (4)

in the following compact form:

∂p

∂t
+ ∇x · fp = −λp+K(λp) . (18)

Proof of Theorem 4: Substitutingp(x, v, t) = h(x, v) in (18) and rearranging the terms,

we obtain

λh = −∇x · fh+K(λh) . (19)
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If we regardλh as an unknown, (19) can be seen as a Fredholm integral equation of the

second kind for every fixedx [24].

To prove necessity, we note that, sinceTx is a probability kernel, we have
∫

V
Tx(v, v

′) dν(v) =

1, ∀x ∈ Ω, which is the same to say that1 ∈ N (I−K∗), ∀x ∈ Ω, whereK∗ denotes the adjoint of

K acting onL∞(ν) andN (·) denotes the null space. From (19), we have that∇x·fh ∈ R(I−K),

whereR(·) denotes the range of the operator. The necessity of (15) is then a consequence of

the “orthogonality” ofR(I −K) andN (I −K∗) [25].

To prove sufficiency, we selectTx so thatI −K is Fredholm [24] with null space spanned

by the functionl(x, v) > 0, i.e., solutions to (19) have the form

λh = −(I −K)†∇x · fh+ α(x)l(x, v) , (20)

where† is used to denote the generalized inverse andα(x) ∈ R is a design parameter.

One such choice isTx(v, v
′) = 1, for which (I −K)∇x · fh = ∇x · fh by the controllability

condition (15) and therefore(I−K)†∇x ·fh = ∇x ·fh. In this case,l(x, v) is a constant, which

leads to

λh = α(x) −∇x · fh . (21)

Note that by choosingα(x) = maxv∈V |∇x · fh| one can obtain a nonnegativeλ such that

λh ∈ L1(Ω × V ). Therefore, there existλ andTx such thath is an invariant density.

Remark1. It may happen that theλ given by (21) is not uniformly bounded, which might be an

issue in proving stability of the invariant density. A sufficient condition (which is also a necessary

condition under appropriate hypotheses) to haveλ(x, v) < 2M , ∀(x, v), for some finite constant

M , is |∇x · fh| ≤Mh, ∀(x, v).

B. Output Feedback Controller

Let us consider now the amount of information that is needed to implement the control law

with the aboveλ. We can rewrite (16) as

λ = h−1α(x) − f · ∇x lnh−∇x · f . (22)

To computeλ(x, v), the controller needs to evaluate three terms.
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• To evaluate the termf · ∇x lnh, we observe that

f · ∇x lnh(x(t),v(t)) =
d lnh

dt+
(x(t),v(t)) , (23)

where ‘+’ denotes the derivative from the right. Therefore,if we makeh = g, the controller

only needs to have access to the time derivative of the observed outputy in order to evaluate

this term.

• To evaluate the term∇x · f , the controller must know the vector fieldf and the current

statex of the process. However, when∇x · f is independent ofx, state feedback is not

necessary to evaluate this term.

• To evaluate the termh−1α(x), the controller needs to know a bound on|g−1∇x · fg| at

every x. State feedback may then be dispensed when this bound can be expressed as a

known function of the observed output functiong. This bound can actually be estimated

on the run as discussed in Example 1.

In summary,λ can be implemented using output feedback under the condition that∇x · f is

known and independent ofx andmaxv∈V |g−1∇x · fg| is a known function ofg.

As a combination of the above discussion and Corollary 2 and Theorems 2, 3 and 4, we can

formulate the following theorem.

Theorem 5. Suppose that
∫

V

f dν(v) = 0 (24)

and span{f(·, v); v ∈ V } = Ω. Then, for anyg(x) such that there exists a constantM < ∞

satisfying|∇x · fg| ≤Mg, the choiceTx(v, v
′) = 1 and

λ(x,v) = M + ǫ−
d lny

dt+
−∇x · f(x,v) , (25)

for any ǫ > 0, implies that the probability measure defined byg(x) is ergodic. Consequently,

the averagest−1
∫ t

0
p(x, v, s) ds converges tog(x) in total variation ast → ∞ for all initial

probability densitiesp(x, v, 0). Moreover, for anyτ > 0 and anyψ such thatψg ∈ L1(Ω × V ),

n−1
n−1
∑

k=0

ψ(x(τk),v(τk)) →

∫

Ω×V

ψ(x, v) g(x)dm(x) × dν(v) a.s. (26)

for almost all initial conditions.
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Remark2. The role of condition (24) is to guarantee that the controllability condition (15)

holds for everyg. Interestingly, this condition also ensures that the process is aperiodic. To

understand why, note that, under condition (24), for a givenvector fieldf(x, v) there exists a

convex combination of vector fields{f(x, v′); v′ ∈ V } that equals−f(x, v). Roughly speaking,

from an initial condition(x, v), there are trajectories that return to(x, v) in arbitrarily small

time by selecting a proper combination of modes{f(x, v′); v′ ∈ V } that cancelsf(x, v). Hence,

becauseλ > 0 andTx = 1, trajectories starting in any set with nonempty interior return to that

set with positive probability in arbitrarily small time, which implies aperiodicity.

Remark3. Theorem 5 admits two straightforward generalizations. Thefirst generalization is to

haveM to be a bounded function ofg. The second generalization involves different choices

of Tx(·, ·): the conclusions of the theorem still hold whenTx > 0 and the operatorK satisfies

K1 = 1, Kf = 0 andK∇ · f = 0.

Remark4. Though this technique is quite successful for problems thatsatisfy the controlabillity

condition (24), it is still an open problem to design controllers under limited controllability and

information. For example, consider the case in whichΩ = R
2, V = [−1, 1], ν is a uniform

probability measure,y = g(x) andf(x1, x2, v) = [x2 v]
T . It is straightforward to verify that the

controllability condition (15) cannot be verified withh(x, v) = g(x), ∀(x, v). In this case, we

need to have somev-dependent invariant densityh(x, v) such that
∫

V
h(x, v) = g(x). However,

it is not clear if that can be done using information fromy only.

V. EXAMPLES

In this section we present applications of our main result tothree systems caracterized by

different dynamics. The first dynamics are heavily inspiredby the tumble and run motion of

E. coli and correspond to a vehicle that either moves in a straight line or rotates in place. The

second is a Reeds-Shepp car [27], which has turning constraints, but can reverse its direction of

motion instantaneously. The third vehicle can be attracted/repelled by one of three beacons in

the plane. Finally, we discuss how our results can be used to understand chemotaxis in theE.

coli.
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A. Optimotaxis

Optimotaxis was introduced in [3] as a solution to an in loco optimization problem with

point measurements only. We consider vehicles moving with positionx ∈ Ω = R
d and velocity

v ∈ V = S
d, the unit sphere. The measureν is the Lebesgue measure on the sphere modulo

a normalization factor. In this case we havef = v. Our objective is to make the probability

density of the vehicles’ position to converge to the observed function g(x) and then have an

external observer that can measure the vehicles position tocollect information aboutg(x). For

this example Theorem 5 applies with

λ = η − v· ∇x ln g , (27)

whereη > ‖∇x ln g‖. Since
∫

V
λ dν = η, one can interpretη as the average tumbling rate.

According to (1), the probability of a vehicle maintaining arun with the same direction in

the interval[0, t] is given by

exp

(

−

∫ t

0

λ(x(τ),v(τ))dτ

)

= exp

(

−

∫ t

0

η −
d

dτ
(ln g(x(τ)))dτ

)

= e−ηt g(x(t))

g(x(0))
. (28)

This provides a simple and useful expression for the practical implementation of the algorithm:

Suppose that an agent tumbled at timetk. At that time pick a random variableρ uniformly

distributed in the interval[0, 1] and tumble when the following condition holds

g(x(t)) ≤ ρeη(t−tk)g(x(tk)), t ≥ tk . (29)

As opposed to what (27) seems to imply, one does not need to take derivatives to implement

(27). Also, the control law is not changed if a constant scaling factor is applied tog(x), which is

important because we could not be able to apply a normalizingconstant to an unknown function

g.

Another interesting feature is thatη may be adjusted online. A vehicle may begin a search

with η = ǫ > 0 and if at some timet it observes thatη < η̄ := t−1 ln g(x(t))/g(x(0)), then it

updatesη to η̄ + ǫ. The use of a small residueǫ guarantees a positiveλ. In this case, one can

prove that the probability of the vehicle visiting any neighborhood in space is positive. Hence,

η will eventually converge tosup ‖∇ ln g‖+ ǫ. A more elaborate adaptation can be obtained by
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choosingη to depend onx throughg(x). With a space-dependentη, the conclusions in Theorem

5 would still hold and it would be possible to reduce the number of unnecessary velocity jumps.

We note that most physical quantities propagate with spatial decay not faster than exponential,

which allows for the uniform boundedness of‖∇x ln g‖. If, however, the measured quantity has

a faster decay rate, it may still be possible to achieve boundedness of‖∇x ln g‖ by preprocessing

the measurements (as explained in Section 2) as long as a finite bound for their decay rate is

known.

Ergodicity provides the basis for a procedure to estimateg(x) by observing the position ofN

vehicles: We start by partitioning the region of interest into a family of sets{Ai ⊂ Ω}, then we

sample the vehicles’ positions at timeskτ ∈ {0, τ, 2τ, . . . , (M−1)τ}, for someτ > 0, and count

the frequency with which vehicles are observed in each setAi. It turns out that this frequency

provides an asymptotically correct estimate of the averagevalue of g(x) on the setAi. To see

why this is the case, we define

GN,M(Ai) =
1

NM

N−1
∑

n=0

M−1
∑

k=0

1Ai
(xn(kτ)) , (30)

where xn denotes the position of then-th vehicle. Assuming that the agents have mutually

independent motion, by Theorem 5 we have that

GN,M(Ai) → G(Ai) :=

∫

Ai

g(x)dx a.s. (31)

asM → ∞. This shows thatg(x) can be estimated by averaging the observations of the vehicles’

position as in (30). The use of multiple agents (N > 1) improves the estimates according to the

relation

var(GN,M) =
var(G1,M)

N
. (32)

Next, we present numerical experiments to illustrate the proposed optimization procedure. The

desired stationary density is taken to beg(x) = cF n(x), whereF are the physical measurements,

c is a normalizing constant andn is an integer.

The main capability of optimotaxis, the localization of theglobal maximum, is stressed in

Fig. 2. We observe a swarm of agents that starts from the upperleft corner (I), initially clusters

around a local maximum (II) and then progressively migratesto the global maximum (III,IV).

When the equilibrium is reached, most agents concentrate ina neighborhood of the global
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maximum. Yet, a portion of the agents clearly indicates the existence of the local maximum.

We notice that the center of mass of the swarm goes straight through the local maximum to the

global one. This feature is not shared with most deterministic optimization procedures and even

with some stochastic ones. As a bonus, the information on secondary sources (local maxima) is

not lost.

Fig. 2. Different stages of optimotaxis in the presence of two maxima. Black dots represent agents position whereas the

background intensity represents the signal intensity.F (x) = 0.4e−‖x‖ + 0.6e−‖x−[1.5 −1.5]′‖, g(x) = F n(x) with n = 10.

To quantify the convergence of the positions of the agents todesired distributiong(x), we

compute the correlation coefficient between the desiredG(Ai) and the empiricalGM,N(Ai),

when regarded as functions on{Ai}. This coefficient was calculated using a space grid with

resolution 0.068 and its time evolution appears Fig. 3.

Also included in Fig. 3 is the evolution of the correlation coefficient when the measurements

are quantized and when exogenous noise is added. In the quantized case, we used the quantized

version of the desired densityg(x) to calculate the coefficient. Interestingly, the addition of noise

does not seem to affect considerably the transient response. Nevertheless, the residual error is

greater due to the fact that the stationary density is not theone expected. On the other hand,

quantization has a more negative impact on convergence time.

The sensitivity of the procedure with respect to the parametern of the preprocessing function is

studied with Fig. 4. The mean-square error of the vehicles position with respect to the maximum

is used as a performance index. One notices that the performance degrades forn too low or too
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Fig. 3. Evolution of the coefficient of correlation for: the noiseless case (solid), the quantized measurements case (cross),

and the exogenous noise case (dashed). The number of quantization levels is 64. The noise added tov̇ is white Gaussian with

standard deviation10−2 along each axis. 100 agents were uniformly deployed in the rectangle[−2.5,−1.5] × [1.5, 2.5] × V .

Refer to Fig. 2 for more details.

high. In particular, the sensitivity to noise and quantization increases withn. This suggests that

an interesting strategy to reduce the effect of uncertainties and quantization is to assign agents

with different values ofn. In this case, the observed density would converge to an arithmetic

average of the powersF n(x). Thus, the mean-square error would be smaller than the error

corresponding to the maximum or minimum value of the chosenn.
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Fig. 4. Mean-square error with respect to the maximum ofF (x) = e−‖x‖ as a function ofn. Noiseless case (solid), quantized

F (x) (dashed), and exogenous noise (dash-dotted). The number ofquantization levels is 128. The noise added tov̇ is white

Gaussian with standard deviation10−3 in each axis.
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B. Example 2

We now consider optimotaxis when vehicles are subject to turning constraints but are still able

to immediately change between forward and backward motion.More precisely, the dynamics of

the vehicle is given by

f(x, v) =











v1 cosx3

v1 sin x3

v2











, (33)

whereV = {−v0, 0, v0} × {−ω0, 0, ω0} and ν is the uniform probability density overV . This

kind of vehicle is referred to in the literature as the Reeds-Shepp car [27].

The vector field satisfies the controllability condition (24). Hence, we can use the sameλ and

T as in Theorem 5 to makeg an invariant density. More precisely,λ = η − f · ∇x ln g and

Tx = 1. Note that, even though{f(x, v); v ∈ V } no longer spansΩ, it is still easy to verify

ergodicity using Lemma 1.

Givenx andy in Ω, there is a trajectory linking these two points that consists of the vehicle

spinning around(x1, x2) until it is aligned with(y1, y2), and then moving in a straight line to

(y1, y2). Using Lemma 1 as in the proof of Theorem 3, one concludes ergodicity (alternatively,

ergodicity is also implied by the fact that every invariant measure of an irreducible process is

ergodic [19, Proposition 4.2.2]). Ergodicity would still hold true even if zero linear velocity

was not allowed. For that case, note thatϕv
tx defines a circular trajectory inΩ when v1 = v0

and v2 = ω0. If (y1, y2) lies outside this circle, there exists a tangent line to the circle passing

through(y1, y2). Thus, a trajectory fromx to y consists of the vehicle moving along the circle

and then along this tangent line until it reaches(y1, y2). If (y1, y2) lies inside the circle, then

the vehicle only needs to move far enough from(y1, y2) before the procedure above can be

executed. Finally, aperiodicity can be verified as in Remark2.

Figure 5 illustrates how the empirical distribution indeedconverges to the desired density. It

shows that this convergence is only slightly slower compared to the unconstrained case when

ω0 = 0.3, but there is a strong dependence in the turning speed as shown when this speed is

decreased by a factor of 2. It is worth to mention that in case for which 0 linear velocity is not

allowed convergence is only slightly slower than the case inwhich it is allowed.
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Fig. 5. Evolution of the coefficient of correlation for the unconstrained turning case (solid), for the constrained turning case

with v0 = 1 andω0 = 0.3 (dots) and for the constrained turning case withv0 = 1 andω0 = 0.15 (cross).

C. Example 3

In this example vehicles make use of three beacons in order tonavigate. In particular, vehicles

always move straight towards or straight away from one of thebeacons. LetΩ = R
2, V =

{a, b, c} × {−1, 1}, wherea, b, c (the position of the beacons) are three points inR
2 not in

the same line, andν is the uniform probability distribution overV . We takef(x, v) to be

f = v2(x − v1). Thus, we have three points in the plane that may be either stable or unstable

nodes. This is an example for which the divergence is not zero. According to Theorem 5, we

choose

λ = η − f · ∇ ln g − 2v2 , (34)

for someη sufficiently large. Note thatf satisfies the hypotheses of Theorem 5, sincea, b and

c are not aligned. The class of reachable densities includes those satisfying‖∇ ln g‖ ≤ Mx−1,

which includes all densities with polinomial decay. We notethat a uniformTx is not the only

one that achieves the desired density for such aλ. For example, it is possible to chooseTx such

that

Tx(v, v
′) =

1

4
1V −{v′1×{−1,1}}(v) . (35)

This jump pdf is such that jumps to the flows with the same fixed point are not allowed. Yet, since

λTx still defines an irreducible Markov chain, we can apply Theorem 3 to conclude uniqueness

of the desired pdf and therefore convergence to it.
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Remark5. In [3] it is shown that the same type of objective of optimotaxis can also be achieved

with a diffusion controller, i.e., a controller that makes use of brownian motion rather than

Poisson jumps. However, the diffusion technique cannot be extended as easily to more general

vector fields. Indeed, one can verify that a result similar toTheorem 5 would only be valid

for vector fields that depend exponentially on the controlled parameters, which would make a

diffusion controller solution to this last example very unlikely.

D. Chemotaxis

Chemotaxis in the bacteriumE. coli is a good example of how the jump control of probability

densities can be used for the optimal distribution of individuals. It is remarkable that the expres-

sion forλ in (27) obtained in the optimotaxis example is an affine function of d(lny)/dt. Hence,

it coincides with simple biochemical models for the tumbling rate of theE. coli; see, for instance,

Alt [2, Equation 4.8]. This author essentially proposed theexistence of a chemical activator for

the locomotion mechanism such that a tumble would occur eachtime the concentration of this

activator would become less than a certain value. The concentration of this activator would jump

to a high value at tumbles and decrease at a rate corresponding to η in (27). A receptor-sensor

mechanism would then regulate the additional generation ofthe activator [this corresponds to

the termv · ∇ ln g(x) in (27)], which would modulate the run length. Though the useof tumble

and run in optimotaxis is inspired by chemotaxis, one would not necessarily expect that our

choice of the tumbling rate would lead to control laws that resemble the biochemical models

in bacteria. As a consequence of this fact, our control law can be used to analyze the bacterial

motion and to predict what stationary distribution is aimedby the bacteria.

Let us suppose that bacteria are performing optimotaxis as it is described in this paper.

Let p(x, v, t) be the spatial density of bacteria and letg(x) be some function related to the

concentration of nutrients at pointx. Suppose also that the bacteria are in a static environment

like a chemostat, which would maintain the level of nutrients constant in time, or that the

consumption of nutrients happens in a timescale that is muchslower than chemotaxis. Given

that p(x, v, t) converges in total variation (see [3]), we have from [28] that

H(t) = −

∫

Ω

∫

V

p(x, v, t) ln

(

1

2
+

1

2

g(x)

p(x, v, t)

)

dxdν(v) → 0 , (36)
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whereH(t) is the Kullback-Leibler divergence betweenp(x, v, t) and the convex combination

1/2 g(x) + 1/2 p(x, v, t). SinceH(t) ≥ 0 with equality to zero if and only ifg(x) = p(x, v, t)

a.e., one can regardH(t) as a cost functional that is being minimized by bacterial chemotaxis

(and, in fact, also by optimotaxis). More specifically, we notice that what is being maximized

is the expected value of an increasing concave function ofg/p, which is a ratio that measures

the concentration of nutrients per density of organisms. Thus, what is being maximized here is

not the probability of a bacterium being at the point of maximum concentration of nutrients, but

the average amount of nutrients a bacterium has access to when interacting with many others

of its kind, which is a biologically meaningful cost for the population of bacteria as a whole.

Interestingly, this effect is achieved as a result of an individualistic behavior (without direct

interaction among the bacteria), which suggests that it arises as an evolutionary equilibrium.

With our analysis, we hope to have shed some new lights regarding the functionalities of

chemotaxis. Similar conclusions were drawn for predators in the work of [29]. However, we

point out that further investigation is necessary given that our conclusions are based on a quite

simplistic model for chemotaxis.

VI. CONCLUSION

A solution to the problem of controlling the probability densities of a process was provided.

Our solution, which involves a randomized controller that switches among different deterministic

modes, is shown to be particularly useful when the observation process is a fixed but unknown

function of the state. Controllability conditions were derived to determine when such a controller

can enforce a given density to be a stationary density for theprocess. Specially, we were interested

in the goal of making the probability density of the process converge to the observation function.

We discussed potential applications of this theory in the area of mobile robotics, where it can

be used to solve problems including search, deployment and monitoring.

One challenge to be addressed in the future is to develop design tools for systems with limited

controllability such as those with relative degree higher than or equal to one, as discussed in

Remark 4. A second important problem is to define convergencerates in a manner that is useful

for both analysis and design. A possible framework is provided by the theory of Large Deviations

[30]. In addition, the authors believe it would be beneficialto explore new applications for their

method in the existing large domain of applications for Markov Chain Monte Carlo methods.
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APPENDIX

PROOF OFLEMMA 1

For path-differentiable functionsψ we define the operator

Lϕψ(x, v) :=
d

dt
ψ(ϕv

tx, v)

∣

∣

∣

∣

t=0

. (37)

In particular, if f is continuous andψ is continuously differentiable, thenLϕψ = f · ∇xψ. We

define a second operator on measurable functionsψ : Ω × V → R by

Kψ(x, v) = λ

∫

V

Tx(v
′, v)(ψ(x, v′) − ψ(x, v)) dν(v′) . (38)

Under Assumption 1(iii ), we have from [11, Chap. 7] thatA := Lϕ + K is the infinitesimal

generatorof Pt, i.e.,

lim
t→0

Ptψ − ψ

t
= Aψ (39)

for all ψ in the domainD(A) of the operator, which is characterized by all bounded path-

differentiableψ such thatAψ is bounded and path-continuous. To prove Lemma 1, we will

extendPt to act as a semigroup of operators onL1(µ), whereµ is the invariant probability

measure in the lemma. BecauseD(A) is dense inL1(µ), Pt defines a strongly continuous

semigroup onL1(µ) with generatorA such thatD(A) ⊂ D(A) andA = A on D(A) [31].

Using [31, Thm. 2.4], one can proceed as in the proof of [11, Thm. 7.8.2] to show that

∫

Ω×V

Aψ dµ = 0 (40)

for all ψ ∈ D(A).

Proof of Lemma 1:

A consequence of the dual ergodic theorem [19, Thm 2.3.6] is that invariant functions under

Pt correspond to the Radon-Nikodym derivative of an invariantmeasure with respect to the

invariant measureµ. Hence, we have thatγµ is also an invariant probability measure forPt.

Consequently,µ1 := (α1 +β1γ)µ andµ2 := (α2 +β2γ)µ are also invariant probability measures,

whereαi andβi are positive constants such thatαi + βi = 1, i = 1, 2, andα1 6= α2. Define γ̄

as the Radon-Nikodym derivative ofµ2 with respect toµ1:

γ̄ :=
dµ2

dµ1

=
α2 + β2γ

α1 + β1γ
. (41)
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By the dual ergodic theorem [19, Thm 2.3.6],γ̄ is invariant underPt, i.e., Ptγ̄ = γ̄ µ-a.e. In

addition,0 < min(α2/α1, β2/β1) ≤ γ̄ ≤ max(α2/α1, β2/β1) <∞.

By [11, Lemma 7.7.3] and the invariance ofγ̄, we have that

γ̄(x, v) = γ̄(ϕv
tx, v) exp

(

−

∫ t

0

λ(ϕv
sx, v) ds

)

+

∫ t

0

dsλ(ϕv
sx, v) exp

(

−

∫ s

0

λ(ϕv
ux, v) du

)

·

∫

V

Tϕv
sx(v

′, v)γ̄(ϕv′

s x, v
′) dν(v′) µ-a.e.

(42)

Taking the derivative int, one can conclude thatAγ̄ = Aγ̄ = 0 and, sinceγ̄ is bounded,

Lϕγ̄, Kγ̄ ∈ L1(µ). From this and the uniform bound onln γ̄, we conclude thatLϕ ln γ̄, K ln γ̄ ∈

L1(µ) as well. Thus,ln γ̄ ∈ D(A) andA ln γ̄ = Aln γ̄. Consider the function

H :=

∫

Ω×V

A ln γ̄ dµ2 −

∫

Ω×V

Aγ̄ dµ1 . (43)

Using the definition ofA, we can expandH as

H =

∫

Ω×V

[

Lϕγ̄

γ̄
+ λ

∫

V

Tx(v
′, v)(ln γ̄(x, v′) − ln γ̄(x, v)) dν(v′)

− γ̄−1Lπγ̄ − λγ̄−1

∫

V

Tx(v
′, v)(γ̄(x, v′) − γ̄(x, v)) dν(v′)

]

dµ2

=

∫

Ω×V

λ

[
∫

V

Tx(v
′, v)

(

1 + ln
γ̄(x, v′)

γ̄(x, v)
−
γ̄(x, v′)

γ̄(x, v)

)

dν(v′)

]

dµ2 . (44)

However, according to (40),H = 0. Since1 + ln a− a ≤ 0 with equality only fora = 1, we

conclude from (44) that̄γ(x, v) = γ̄(x, v′) ν̄-a.e. But

γ = −
α2 − α1γ̄

β2 − β1γ̄
(45)

implies that alsoγ(x, v) = γ(x, v′) ν̄-a.e. This proves (12). From the definition ofK, we have

Kγ̄ = 0 µ-a.e. SinceAγ̄ = 0 µ-a.e., it follows that alsoLϕγ̄ = 0 µ-a.e. This proves (11) for̄γ.

Using (45), we can extend (11) toγ.
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