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Abstract

We investigate the problem of controlling the probabiligndity of the state of a process that is
observed by the controller via a fixed but unknown functiontteé state. The goal is to control the
process so that its probability density at a point in theestgtace becomes proportional to the value
of the function observed at that point. Our solution, insgiby bacterial chemotaxis, involves a ran-
domized controller that switches among different deterstimmodes. We show that under appropriate
controllability conditions, this controller guarantee@meergence of the probability density to the desired
function. The results can be applied to the problem of in loptimization of a measurable signal using
a team of autonomous vehicles that use point measuremerie afignal but do not have access to
position measurements. Alternative applications in treaaf mobile robotics include deployment and

environmental monitoring.

Index Terms

Piecewise-deterministic Markov processes, mobile rakptiybrid systems

. INTRODUCTION

This paper addresses the control of a Piecewise-DeteltioiMarkov Process (PDP) through
the design of a stochastic supervisor that decides whegtsegitshould occur and to which mode

to switch. In general, the system’s statecannot be measured directly and is instead observed
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through an outpuy = ¢(x), whereg(-) is unknown to the controller. The control objective is
to achieve a steady-state probability density for the statieat matches the unknown function

g(+) up to a normalization factor.

We were motivated to consider this control objective by prois in the area of mobile
robotics. In this type of applications typically includes the position of a mobile robot that
can take point measuremenis= g(x) at its current location. Irdeployment applicationsa
group of such robots is required to distribute themselvesnirenvironment based on the value
of these measurements, e.g., the measurements may be ttentation of a chemical agent
and one wants the robots to distribute themselves so tha mbots will be located in areas of
higher concentration of the chemical agentstarch applicationsa group of robots is asked to
find the point at which the measurement has a global maximunm{pimum), in which case
one wants the probability density function »fto have a sharp maximum at the pointvhere
g(z) is maximum (or minimum). These applications are often reférto as “source seeking”
motivated by scenarios in which the robots attempt to find gberce of a chemical plume,
where the concentration of the chemical exhibits a globakimam. Finally, in monitoring
applications one attempts to estimate the value of a spatially-definadtion by keeping track
of the positions of a group of robots whose spatial distidoutreflects the spatially-defined
function of interest (much like in deployment applicatihrnBotential applications for this work
thus include chemical plant safety, hydrothermal vent peoting, pollution and environmental

monitoring, fire or radiation monitoring, etc.

The control algorithms proposed here are motivated by themchactical motion of the
bacteriumE. coli. Being unable to directly sense chemical gradients becatises reduced
dimensions, this organism is still able to follow the gradief a chemical attractant, despite the
rotational diffusion that constantly changes the bacterarientation. This is accomplished by
switching between two alternate behaviors knowmasandtumble[1], [2]. In the run phase,
the bacterium swims with constant velocity by rotating itsgélla in the counter-clockwise
direction. In the tumble phase, by rotating its flagella ie thlockwise direction, the bacterium
spins around without changing its position and in such a viaay it enters the next run phase
with arbitrary orientation. Berg and Brown [1] observedttttee only parameter that is affected

by the concentration of a chemical attractant is the dumadiforuns. Roughly speaking, the less
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improvement the bacterium senses in the concentrationeofittiactant during the run phase,
the more probable a direction change (tumble) becomes. &uunbtion leads to a distribution
whose peak usually coincides with the optimum of the sensehtity, much like the search

applications in mobile robotics mentioned above.

The parallel betweelk. coli's chemotaxis and some search problems involving autonemou
vehicles is quite remarkable: In mobile robotics, gradierformation is often not directly
available, either because of noisy and turbulent envirarimmer because the vehicle size is
too small to provide accurate gradient measurements,ecigb also faced bk. coli. This
bacterium also does not have access to global positionnvaton, which is analogous to the
lack of position measurements that arise in applicatiomsafoich inertial navigation systems
are expensive, GPS is not available or not sufficiently ateufas in underwater navigation
or cave exploration), or the vehicles are too small or wedagtstrained to carry this type
of equipment. These observations led us to design a biatgimspired control algorithm for
autonomous vehicles, namegtimotaxig3]. While mimicking chemotaxis is not a new solution
to optimization problems, see e.g. [4], [5], [6], [7], [8]ptimotaxis is distinct in that we are

able to provide formal statements about the stationaryityjeasd the convergence to it.

In this paper, we show that the principles behind optimataen be used in the much more
general setting of controlling the probability density étion of a PDP through the design of
a stochastic supervisor that decides when switches shawlar @and to which mode to switch.
We establish controllability/reachability results forighproblem and provide a controller that,
under the appropriate controllability conditions, guaeas the ergodicity of the desired invariant
density. As a consequence, the probability density of th BBnverges to the desired invariant
density in the Cesaro sense and results like the Law of LEgmbers apply. In addition, we
provide general results that have wide application in thelystof ergodicity in PDPs, beyond

the specific control design problem addressed in this paper.

Although the control of probability densities is still arcipient subject in the control literature,
a substantial body of related work can be found in the liteeabf Markov Chain Monte Carlo
(MCMC) methods [9]. These methods use a Markov chain to safnpi a known (but usually
hard to compute) distribution and then estimate integisgseiated with that distribution. MCMC

is largely used in statistical physics and in bayesian erfee. In fact, our method can be regarded
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as an instance of a dynamical/hybrid Markov Chain Monte &aréthod [10]. In particular, the
hit-and-runmethod [11] resembles optimotaxis in that it also executigigeewise linear random
walk. The main difference between optimotaxis and tradaloMCMC is that samples can be

discarded in MCMC, which is not possible in our case due tgpthesical nature of the process.

This paper is organized as follows: the description of tlub@m is given in Section 2; Section
3 provides some auxiliary results on Markov processes tleatiseful in the control design and
stability proofs; the proposed controller is described @ctHn 4; examples are given in Section

5; conclusions and final comments are given in Section 6.

II. PROBLEM DESCRIPTION

Initially, we briefly describe the concept of Piecewise-®atinistic Markov Processes (PDP)
that is used in the paper, following closely the frameworkdduced in [12]. In a PDP, state
trajectories are right continuous with only finitely manysabntinuities jumpg on a finite
interval. The continuous evolution of the process is désdriby a deterministic flow whereas

the jumps occur at randomly distributed times and have nandmplitudes.

We consider state variables € Q := R? andv € V, whereV is a compact set. During
flows, x(¢)* evolves according to the vector fielf{x,v), whereasv(t) remains constant and
only changes with jumps. For a fixade V, we denote byy;x the continuous flow at time
defined by the vector field(-,v) and starting at: at time0. The conditional probability that a

jump occurs between the time instantands, 0 < s < ¢, givenx(s) andv(s), is

t
Lo (- [ A x v @
where\(z,v) is called thejump rateat (z,v) € Q2 x V. At each jump,v assumes a new value
given by thejump pdf7,.(-,v™). Thus, if a jump occurs at timg,, thenT, ) (v, v=(tx)) is the
probability density ofv(¢,) atv givenx~ () andv (), where the superscript minus indicates

the left limits of the respective processes.

This PDP model is captured by several stochastic hybricesyshodels that appeared in the
literature, including our stochastic hybrid models disadsin [13], or the hybrid models initially
proposed in [14] by Hu, Lygeros and co-workers and furthgraexied in a series of subsequent

papers [15]. Fig. 1 depicts a schematic representation oPoWP.
We use boldface symbols to indicate random variables.
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A(x, V)

v~ Tx*('avi)

Fig. 1. Hybrid automaton for the PDP

We definep(z,v,t) as the joint probability density of the state,v) at time¢. Here it is
important to explicit the structure of the parameter specéVe consider” to be a compact
subset of a locally compact separable metric space equipfibca Borel measure such that
v(V) = 1. Note that, as opposed to [12], we do not requiréo be countable. This more general
setting for PDP’s is supported by the theory developed irj. [DEnoting bym the Lebesgue
measure i, we have thatf, ., p(z,v,t) dm x dv =1, ¥t > 0. We denote by.'(Q2 x V) the

space of real functions integrable with respecito< v.

In our setting, the vector field is a given and the jump raté and the jump pdfl, are
control parameters. The controller cannot measure the stdirectly; instead, an observation
variabley(t) = g(x(t)) is given. In general, the functiog(x) is not known to the controller,

which only has access ().

Assuming thaty(x) is nonnegative and integrable, our objective is to desigand 7" such
that a randomized controller will seleett) as a function of the observatiofg(7);0 < 7 < t}
collected up to time so that the marginal|, p(z, v, t)dv(v) converges tacg(z), wherec is
a normalizing constant chosen so tha{z) integrates to one. As it will be clear later, it is
not necessary for the controller to know the normalizingstantc in order to implement the

proposed control law.

In practice,g(z) is a chosen function of some physical measuremeiiis. For example, we
can selecy(x) = Q(F(x)), where the function)(-) is a design parameter used to guarantee
that Q(F') is nonnegative and integrable. The functiQ-) may also be used to accentuate the

maxima of F'. For example, if the physical measurement corresponds(tg = 1 — ||z||?, a
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reasonable choice fap(-) that leads to a nonnegative integrable function is

Q(F) =

F JIFF >0
{ @)

def=0 Jif F <6
for someo > 0. Alternatively, if one is mainly interested in the positiohthe maxima ofF'(x),

a possible choice fof)(-) is given by

QF) = F" 3)

for somen > 1, provided thatF™ is already nonnegative and integrable [if not one could also

use( to achieve this, as it was done in (2) above].

[1l. SOME FUNDAMENTAL RESULTS IN STOCHASTIC HYBRID SYSTEMS

In this section we provide a few key results on the invariardbpbility densities of our
PDP. The first result provides a generalized Fokker-Plafmkaogorov equation that governs
the evolution of probability densities. We assume throughbe text that the vector field is
continuously differentiable of2 x V/, that there is no finite escape time, and that only a finite

number of jumps occur in finite time intervals.

Theorem 1 ([16]). If there exists a pdf(x, v, t) for (x(¢), v(¢)) that is continuously differentiable

on Q2 x V x R*, then it satisfies the following generalized Fokker-PlaKdkmogorov equation:

0
a—f + V.- fp=—\p +/ Ty (v, 0" )A(z,v")p(x, v, t)dv(v') | 4)
\%4
where the divergence operat®&f, - is taken with respect to the variableonly. O

When f(z,v) = v, (4) has an important role in linear transport theory, whiéerenodels
particles moving with constant velocity and colliding slialy [17], [18]. In this case, regarding
p as the density of particles, (4) has a simple intuitive itetation: on the left-hand side we
find a drift termV, - vp corresponding to the particles straight runs, on the rigirtd side we
find an absorption term-\p that corresponds to particles leaving the state), and an integral

term corresponding to the particles jumping to the sfate).

Equation (4) will be used in our control design to determin@irap rate A and a jump pdf

T, such that the joint invariant density of the process [whilolbtained by settingp/ot = 0
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in (4)] corresponds to an invariant marginal distribut[ﬁpp(x,v,t) dv(v) that is proportional
to g(z). In fact, it will even be possible to obtain jaint invariant distributionp(x, v,t) that
is independent of), therefore also proportional tg(z). For simplicity of presentation, in the
sequel we assume thatz) has been scaled so thay(x)dz = 1 and thereforgy(z) is already

the desired invariant distribution. However, none of owsults require this particular scaling.

A. Elements of the Ergodic Theory for Markov Chains

Once we derive control laws that result in the desired imrdrdensity, it will be necessary
to verify whether or nop(z, v,t) actually converges to it from an arbitrary initial distrtmn.
For this purpose, we present some results from ergodicyhbat are useful to characterize the
convergence of our PDP. Because ergodic theory is moreugbty developed for discrete-time
processes, we first state the results for a general distine¢éeMarkov chain and then show how
to adapt them to continuous time. A second reason for digayisliscrete-time processes is that,
in practice, measurements are sampled at discrete timanissthus defining a discrete-time

process.

Consider a general discrete-time Markov ch§n} on the measurable spa¢¥®, B), where
YV is a locally compact separable metric space Bnd the corresponding Borel-algebra. The

chain is defined using theansition probability functionP:

P(y, B) = Pr{&+1 € Bl& =y} | ®)

forally € Y, B € Bandk > 0. We say thaf: is aninvariant probability measurdor P if, for
every B € B,

w(B) = /y P(z. B)du(z) . 6)

A set B € B is said to bdnvariant with respect ta? if P(x, B) = 1 for all z € B. An invariant
probability measure is said to godicif, for every invariant setB, u(B) = 0 or u(B) = 1.
The following version of the law of large numbers for Markdvamns will allow us to conclude
that ergodicity of the invariant measure is sufficient towallus to estimatey(z) by sampling

x(t) over time.
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Theorem 2 ([19],Thm. 5.4.1) Suppose thaj is ergodic. Then, there exists a measurable set

Y’ € Y such thatu()’) = 1 and, for every initial conditiory € ),

n—1

v [vdn as ™

k=0

for every test function) € L'(p). O

By applying Theorem 2 to polynomial test functions one concludes that the time averages
that appear in the left-hand side of (7) can be used to caristansistent estimators for the
moments of the stationary measure of the process. Furtheresult also provides a methodology
to construct a consistent estimator for the invariant meagself. To achieve this, we define

the empirical measurg™ by

n—1
u(B) =n"t Yy 15(6) ®
k=0

for every B € B, wherelp is the indicator function of the seB. Thus, since the left-hand
side of (7) is equal to the expected valuewofvith respect to the empirical measyu€?, we

have that (7), when restricted to the set of bounded contimuest functions, gives precisely
the definition of weak convergence pf* to . [19]. We formulate this result in the following

corollary.

Corollary 1. If i is an ergodic measure, then the empirical measulfé converges weakly to

1 almost surely for every initial condition ipy'. O

By taking the expectation in Corollary 1 we have that alsoltve of the process converges
weakly to i in the Cesaro sense (i.e., convergence of the partial gegyaln this paper
convergence of measures will only be considered in the rGesense. Even though some results
in the paper can be proven for convergence in total variatianhave limited practical interest

in this type of convergence so we will not prove it here.

For continuous-time processd$;}, one can analogously consider a transition probability
P,(y,B) = Pr{0, € B|0, = y} and then define invariant measures and invariant sets as thos
that are invariant undep, for all ¢ > 0. The definition of an ergodic measure remains the same
as above. Given the existence of an ergodic measure, ondataresyodic theorems analogous

to the one above provided that a continuity condition fris satisfied [20]. For our PDP, in

September 3, 2009 DRAFT



particular, one concludes that, if we construct a contal lsder whichg(x) defines an ergodic
measurey for the PDP, then the probability measurdy, -) for (x(t), v(t)) converges weakly
to 1 in the Cesaro sense for almost all initial conditigin the support ofy(z). Moreover, for

every initial probability density(z, v, 0) absolutely continuous with respect 4¢r), the Cesaro

averagel ! [ p(z, v, s) ds converges tg(x) in total variation.

In practice, more important than the convergence in cootisutime is the convergence of
the sampled processes. For the continuous-time proggsslet {¢,.} := {6, } be the process
defined by samplindd,} at a sequence of timggy }, wherer, — oo a.s. ask — oco. We say
that a sampled chaifi,.} is well-sampledif {6,} and {{.} have the same ergodic measures.

We can formulate the following corollary for well-sampleldains.

Corollary 2. If u is an ergodic measure fof6,}, then the conclusions in Theorem 2 hold for

every well-sampled chaif¢;}.

Thus, we can use well-sampled chains to recover the stdath/statistics of continuous-time
processes. Notice, however, that periodic sampling schelnaot always produce well-sampled
chains. Suppose thatis an ergodic measure fd¥,}. If 7, = kT}, for some positive constant
T, then P, is the corresponding transition probability f§¢,} and . is an invariant measure
for Pr,, but u is not necessarily ergodic. In fact, invariant sets fgr may not be invariant for
P, for all t > 0. We say that the processaperiodicif, for all 77 > 0, the invariant measures for
Py, are also invariant fo”;, for all ¢ > 0. Clearly, for aperiodic processes, the process sampled

according tor(k) = kT is well-sampled.

All the cases we deal with in this paper involve aperiodiccpsses. Indeed, we derive
controllability conditions that in a way demand aperiotyiciYet, if one has to sample from
a periodic process, it is possible to generate well-samgieihs by sampling at random times.
For example, a well-sampled chain would be obtained if tepda times are chosen such that,
for kK > 0, 7,.1 — 7 are i.i.d. random variables with finite mean and probabitliigtribution

absolutely continuous with respect to the Lebesgue medsae[21, Lemma 2.2]).

B. Ergocity for the PDP

The next result provides a sufficient condition for the eigibgl of the invariant measures

of our PDP. Here, we cajump Markov chainthe chain defined by the jumps alone, that is,
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our PDP when the vector field is set to0. We say that the jump Markov chain iseducible
for a fixed z € Q if, for every initial conditionv € V and everyA with v(A) >0, there
is a positive probability thatd will be eventually reached froma. We say that a measurable
functiony : Q x V' — R is path-continuougpath-differentiablg if ) (¢}z,v) is a continuous

(continuously differentiable) function affor all (x,v).

Assumption 1. i. the jump Markov chain is irreduciblgz € €.
ii. f is continuously differentiable im and continuous in.
jii. A(z,v) is uniformly bounded o2 x V' and, for any bounded and path-continuousit
holds that

s Aoz, 0) /V Tpaltf, ) (g, o) d(e) ©)

is continuous.
iv. spar f(z,v);v eV} =Q, Ve e Q.
[l

Theorem 3. Under Assumption 1, suppose that there exists an invarigntgbility measure for

the PDP, then this measure is ergodic. O

We note that conditionv can be relaxed as done in Example 2. Under the conditionseof th
theorem, one can replace the weak convergence resultseféavhof the process in the previous
subsection by the stronger notion of convergence in the war@&ation norm. For that purpose,
one can use the Phillips expansion to show that the PDP israckgs [22]. Then the restriction
of the process to the ergodic classes is a Harris processoamdrgence in total variation follows
[23].

C. Proof of Theorem 3

For a bounded measurable function 2 x V' — R, we define thdransition operatorof our
PDP to be

Pt¢(x7 U) = E(:p,v)wb{(t)? V(t)) ) (10)

whereE, .y denotes the expectation with respect to the initial coonitic, v) at time0. Given
an invariant measure for the PDP, a function) € L!(x) is said to beinvariant with respect

to u if Py =1 p-a.e. for allt > 0.
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A key result that we use to establish ergodicity of an invarimeasure is the fact that is
ergodic if and only if every function that is invariant witkegpect tou is constantu-a.e. [19,
Lemma 5.3.2]. Lemma 1 below provides two key properties ef itivariant functions of our
PDP. Namely, it states that invariant functions must beriavé both under flows and jumps. We
will see later that, under certain conditions, only consfanctions can be invariant under flows
and jumps for our PDP. This will show that all invariant fuincis are constant and therefore

that . is ergodic.

Lemma 1. Let ;1 be an invariant probability measure for the PDP and fete L!(x) be an

invariant function with respect ta . Then, under Assumption 1 (iii),

Yo z,v) =y(x,v) Vt>0, u(de,dv)-a.e. (11)

and
Y(z,v) =~(z,v") v(dr,dv,dv')-a.e., (12)
whererv(dz, dv, dv') = ANz, v) T, (v, v )v(dv') x p(dz, dv). O

The proof of Lemma 1 is presented in the appendix.

Proof of Theorem 3:

Let . denote the invariant measure andiet L'(x) be invariant undef;. From Assumption
1 (iii) we have that Lemma 1 applies. Since by Assumption)lthe jump Markov chain
is irreducible, we have from Lemma 1 thatdoes not depend on p-a.e. Without loss of
generality, lety be such that it does not depend oron supp i and such that (11) holds on
Supp /L.

Given (xg, vg) € supp u, let {(zo,v;)} € supp u be such that spdif (zg, v;), i =1,...,d} =
R?, which is possible due to Assumption i)(and {v). For 7 := (t1,...,t;) € R, lety =
@14 0---0plwg. Then, from Assumption lii) we have that

0
o =l o flaou) ] (13)

Sincedet (2£(0,...,0)) # 0, there exists a neighborhod®,.(z,) such that every € B, ()
can be written ag = ¢;% o - - -0 ¢z for somer ¢ R?. Because: is invariant,y € supp x and
(11) in Lemma 1 implies that

Udo

V(g oo pilag) = y(xo) , (14)
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where the dependence orwas omitted. From (14), we have thais constant inB,.(z(). Since
xog € S is arbitrary,y must be constant-a.e. Thus, as commented aboyueis ergodic by [19,

Lemma 5.3.2]. ]

[V. CONTROL DESIGN

In this section we provide a family of control laws that asleie@ur objective.

A. A Controllability Condition

We start with a controllability analysis that provides nesagy and sufficient conditions under
which a steady-state solutigriz, v,t) = h(z,v), ¥(z,v) € Q x V andt > 0, may be enforced.

Naturally, we assume tha, , h dm x dv = 1.

Theorem 4. Given a densityi(z,v) > 0, V(z,v) € Q x V, with V, - fh € L*(Q x V), there
exists a jump intensityx and a jump pdff, such thath is an invariant density for the PDP if
and only if

/VV;B - fh(z,v) dv(v) =0, Ve € Q . (15)

Moreover, when this condition is verified, the PDP has tharddsnvariant distribution/ for
a uniform jump distributiori’, (v, ") = 1, Vz,v,v" and a jump intensity
a(r) =V, - fh(z,v)

Mz, 0) = === (16)
wherea(z) can be any function for whichh is nonnegative and integrable. O
To prove Theorem 4, it is convenient to define the followinggpgral operator:
Ko = [ Lo, dute) (17)
\%4

Y € LY(Q2 x V). This operator allows us to rewrite the Fokker-Planck-Kegorov equation (4)
in the following compact form:

0
5+ Ve fp =X+ KOw) . (18)

Proof of Theorem 4: Substitutingp(z, v,t) = h(z,v) in (18) and rearranging the terms,
we obtain
A==V, fh+ K(\h) . (29)
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If we regard \h as an unknown, (19) can be seen as a Fredholm integral equatithe
second kind for every fixed [24].

To prove necessity, we note that, sifiGeis a probability kernel, we havg, T’ (v, v') dv(v) =
1, Vo € Q, which is the same to say thate N (I—K*), Vx € 2, whereK* denotes the adjoint of
K acting onL>(v) and N (-) denotes the null space. From (19), we have Watfh € R(I—K),
whereR(-) denotes the range of the operator. The necessity of (15)eis ahconsequence of
the “orthogonality” of R(I — K) and NV (I — K*) [25].

To prove sufficiency, we seledt, so that/ — K is Fredholm [24] with null space spanned

by the functioni(x,v) > 0, i.e., solutions to (19) have the form
M= —(I — K)'V, - fh+ a(2)l(z,v) , (20)
where7t is used to denote the generalized inverse afid) € R is a design parameter.

One such choice i, (v, v") = 1, for which (I — K)V, - fh =V, - fh by the controllability
condition (15) and thereford — K)'V, - fh = V., - fh. In this case|(x,v) is a constant, which
leads to

A= a(x) =V, fh . (22)

Note that by choosing(z) = max,cv |V, - fh| one can obtain a nonnegativesuch that

Ah € LY (2 x V). Therefore, there exist and 7, such thath is an invariant density. [

Remarkl. It may happen that the given by (21) is not uniformly bounded, which might be an
issue in proving stability of the invariant density. A suiiict condition (which is also a necessary
condition under appropriate hypotheses) to haye v) < 2M, V(x,v), for some finite constant
M, is |V, - fh] < Mh, ¥(z,v).

B. Output Feedback Controller

Let us consider now the amount of information that is needenplement the control law
with the above\. We can rewrite (16) as

A=h"ta(r)— f-VolInh—V,-f . (22)

To compute)\(z, v), the controller needs to evaluate three terms.
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« To evaluate the ternf - V,In h, we observe that

- VoI h(x(t), v(0) = S (el V() 23

where ‘+’ denotes the derivative from the right. Therefofeye makeh = ¢, the controller

only needs to have access to the time derivative of the obdenrtputy in order to evaluate
this term.

. To evaluate the ternV, - f, the controller must know the vector fieltl and the current
statex of the process. However, whéevi, - f is independent ofr, state feedback is not
necessary to evaluate this term.

. To evaluate the termi~'«a(z), the controller needs to know a bound @T'V, - fg| at
every x. State feedback may then be dispensed when this bound carpbessed as a
known function of the observed output functign This bound can actually be estimated
on the run as discussed in Example 1.

In summary,\ can be implemented using output feedback under the conditiatV, - f is

known and independent of andmax,cy |¢g7'V, - fg| is a known function ofs.

As a combination of the above discussion and Corollary 2 damebiiems 2, 3 and 4, we can

formulate the following theorem.

Theorem 5. Suppose that
/ fdv(v) =0 (24)
\%4

and span{f(-,v);v € V} = . Then, for anyg(z) such that there exists a constahf < oo
satisfying|V, - fg| < Mg, the choicel,(v,v") = 1 and

dlny
dt+

for any e > 0, implies that the probability measure defined fy) is ergodic. Consequently,

A(x,v) =M+ ¢€—

-V, f(x,v), (25)

the averageg™! fotp(x,v,s) ds converges tgy(z) in total variation ast — oo for all initial

probability densities(z, v, 0). Moreover, for anyr > 0 and any:) such thatyg € L'(Q x V),

n! z_:w(x(rk:),v(rk)) — U(x,v) g(x)dm(z) x dv(v) a.s. (26)

QxV

for almost all initial conditions. O
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Remark2. The role of condition (24) is to guarantee that the contholiy condition (15)
holds for everyg. Interestingly, this condition also ensures that the mece aperiodic. To
understand why, note that, under condition (24), for a givector field f(z,v) there exists a
convex combination of vector fieldsf (z,v'); v’ € V'} that equals-f(x,v). Roughly speaking,
from an initial condition(z,v), there are trajectories that return to,v) in arbitrarily small
time by selecting a proper combination of modgszx,v’); v € V'} that cancels (z,v). Hence,
because\ > 0 andT, = 1, trajectories starting in any set with nonempty interidure to that

set with positive probability in arbitrarily small time, udh implies aperiodicity.

Remark3. Theorem 5 admits two straightforward generalizations. fits¢ generalization is to
have M to be a bounded function af. The second generalization involves different choices
of 7,(-,-): the conclusions of the theorem still hold whé&h > 0 and the operatok™ satisfies
Kl=1,Kf=0andKV - f=0.

Remark4. Though this technique is quite successful for problems shtisfy the controlabillity
condition (24), it is still an open problem to design coned under limited controllability and
information. For example, consider the case in whith= R?, V = [-1,1], v is a uniform
probability measurey = g(x) and f(z1, 2, v) = [z2 v]T. It is straightforward to verify that the
controllability condition (15) cannot be verified with(z, v) = g(x), ¥(x,v). In this case, we
need to have some-dependent invariant densityx, v) such thatf, h(z,v) = g(z). However,

it is not clear if that can be done using information frgnonly.

V. EXAMPLES

In this section we present applications of our main resulthtee systems caracterized by
different dynamics. The first dynamics are heavily inspibgdthe tumble and run motion of
E. coli and correspond to a vehicle that either moves in a straigbtdr rotates in place. The
second is a Reeds-Shepp car [27], which has turning contstrdiut can reverse its direction of
motion instantaneously. The third vehicle can be attrdmeeélled by one of three beacons in
the plane. Finally, we discuss how our results can be usecdderstand chemotaxis in the

coli.
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A. Optimotaxis

Optimotaxis was introduced in [3] as a solution to an in logwirmization problem with
point measurements only. We consider vehicles moving wiitipn z € 2 = R? and velocity
v € V = §% the unit sphere. The measureis the Lebesgue measure on the sphere modulo
a normalization factor. In this case we haye= v. Our objective is to make the probability
density of the vehicles’ position to converge to the obsgritenction g(z) and then have an
external observer that can measure the vehicles positi@oltect information abouy(x). For

this example Theorem 5 applies with
A=n—v-V,lng , (27)
wheren > ||V, Ing||. Since [;, A dv =1, one can interprej as the average tumbling rate.

According to (1), the probability of a vehicle maintaining@n with the same direction in

the interval|0, ] is given by

exp (= [ At v(ear) = exp (= [ 0= 2 ngtx(r) i

_ t))

—e nt& . (28)
9(x(0))

This provides a simple and useful expression for the praictioplementation of the algorithm:

Suppose that an agent tumbled at time At that time pick a random variablg uniformly

distributed in the interval0, 1] and tumble when the following condition holds
g(x(t)) < pe" M g(x(ty)), t >t . (29)

As opposed to what (27) seems to imply, one does not need ¢od@kvatives to implement
(27). Also, the control law is not changed if a constant scpfactor is applied tg(x), which is
important because we could not be able to apply a normal@mgtant to an unknown function
g.

Another interesting feature is thatmay be adjusted online. A vehicle may begin a search
with n = € > 0 and if at some time it observes that) < 77 := t~'In g(x(t))/g(x(0)), then it
updatesy to 77 + €. The use of a small residueguarantees a positive In this case, one can
prove that the probability of the vehicle visiting any ndigihhood in space is positive. Hence,

n will eventually converge taup ||V In g|| +¢. A more elaborate adaptation can be obtained by
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choosingn to depend onx throughg(z). With a space-dependentthe conclusions in Theorem

5 would still hold and it would be possible to reduce the nundfainnecessary velocity jumps.

We note that most physical quantities propagate with Spdeieay not faster than exponential,
which allows for the uniform boundedness |V, In g||. If, however, the measured quantity has
a faster decay rate, it may still be possible to achieve bedness of|V,. In g|| by preprocessing
the measurements (as explained in Section 2) as long as & limitnd for their decay rate is

known.

Ergodicity provides the basis for a procedure to estiméig by observing the position o¥
vehicles: We start by partitioning the region of interesbia family of sets{A; C Q}, then we
sample the vehicles’ positions at times € {0, 7, 27, ..., (M —1)7}, for somer > 0, and count
the frequency with which vehicles are observed in each4sett turns out that this frequency
provides an asymptotically correct estimate of the avekadee of g(x) on the setd;. To see

why this is the case, we define

N—-1M-1

Grnr(A) = —— 53 1 (xalh)) (30)
NM

n=0 k=0
where x,, denotes the position of the-th vehicle. Assuming that the agents have mutually
independent motion, by Theorem 5 we have that
Gnm(A) — G(4) ::/ g(z)dz a.s. (31)
A
asM — oo. This shows thag(z) can be estimated by averaging the observations of the eshicl
position as in (30). The use of multiple agendé & 1) improves the estimates according to the

relation
V&I‘(GLM)

N

Next, we present numerical experiments to illustrate tloppsed optimization procedure. The

(32)

Var(GN,M) =

desired stationary density is taken todye) = ¢F"(x), whereF" are the physical measurements,

¢ is a normalizing constant andis an integer.

The main capability of optimotaxis, the localization of tgbal maximum, is stressed in
Fig. 2. We observe a swarm of agents that starts from the upftezorner (1), initially clusters
around a local maximum (lI) and then progressively migratethe global maximum (ll1,1V).

When the equilibrium is reached, most agents concentrate meighborhood of the global
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maximum. Yet, a portion of the agents clearly indicates tkistence of the local maximum.
We notice that the center of mass of the swarm goes straighiigh the local maximum to the
global one. This feature is not shared with most determtimization procedures and even
with some stochastic ones. As a bonus, the information oconglzry sources (local maxima) is

not lost.

an o (v

Fig. 2. Different stages of optimotaxis in the presence ab twaxima. Black dots represent agents position whereas the
background intensity represents the signal intengityr) = 0.4¢~1#ll + 0.6¢~1#=11:5 =151l g(2) = F™(2) with n = 10.

To quantify the convergence of the positions of the agentdesired distributiory(x), we
compute the correlation coefficient between the des@gd;) and the empiricalG  n(4;),
when regarded as functions dm;}. This coefficient was calculated using a space grid with

resolution 0.068 and its time evolution appears Fig. 3.

Also included in Fig. 3 is the evolution of the correlatiorefficient when the measurements
are quantized and when exogenous noise is added. In theizpchnase, we used the quantized
version of the desired densityz) to calculate the coefficient. Interestingly, the additiémoise
does not seem to affect considerably the transient respdleertheless, the residual error is
greater due to the fact that the stationary density is nototie expected. On the other hand,

guantization has a more negative impact on convergence time

The sensitivity of the procedure with respect to the parametf the preprocessing function is
studied with Fig. 4. The mean-square error of the vehicledtijpn with respect to the maximum

is used as a performance index. One notices that the penieerdegrades for too low or too
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Correlation Coefficient

. . .
600 800 1000 1200
time

Fig. 3. Evolution of the coefficient of correlation for: the@iseless case (solid), the quantized measurements cass)(cr
and the exogenous noise case (dashed). The number of gummtievels is 64. The noise addedtds white Gaussian with
standard deviation0~2 along each axis. 100 agents were uniformly deployed in totangle[—2.5, —1.5] x [1.5,2.5] x V.

Refer to Fig. 2 for more details.

high. In particular, the sensitivity to noise and quant@atincreases wit. This suggests that

an interesting strategy to reduce the effect of uncergsnéind quantization is to assign agents
with different values ofn. In this case, the observed density would converge to ahnagitic
average of the powers™(x). Thus, the mean-square error would be smaller than the error

corresponding to the maximum or minimum value of the chasen

Mean-Square Error

Fig. 4. Mean-square error with respect to the maximuniaf) = eIl as a function ofx. Noiseless case (solid), quantized
F(x) (dashed), and exogenous noise (dash-dotted). The numhmraotization levels is 128. The noise addedites white

Gaussian with standard deviatian~2 in each axis.
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B. Example 2

We now consider optimotaxis when vehicles are subject tarigrconstraints but are still able
to immediately change between forward and backward moktmre precisely, the dynamics of

the vehicle is given by

V1 COS T3
flz,v)=| vysinag | (33)

V2

whereV = {—vg,0,v9} x {—wo,0,wp} andv is the uniform probability density over. This

kind of vehicle is referred to in the literature as the ReBdspp car [27].

The vector field satisfies the controllability condition Y2lence, we can use the sarhand
T as in Theorem 5 to make an invariant density. More precisely, = n — f - V,Ing and
T, = 1. Note that, even thoughf(x,v); v € V} no longer spans), it is still easy to verify

ergodicity using Lemma 1.

Givenz andy in €, there is a trajectory linking these two points that cossadtthe vehicle
spinning aroundxy, z5) until it is aligned with(y;,y>), and then moving in a straight line to
(y1,y2). Using Lemma 1 as in the proof of Theorem 3, one concludesdaity (alternatively,
ergodicity is also implied by the fact that every invarian¢asure of an irreducible process is
ergodic [19, Proposition 4.2.2]). Ergodicity would stilbld true even if zero linear velocity
was not allowed. For that case, note thét: defines a circular trajectory it whenv, = v,
andvy, = wy. If (y1,72) lies outside this circle, there exists a tangent line to tinelec passing
through (1, y2). Thus, a trajectory fromx to y consists of the vehicle moving along the circle
and then along this tangent line until it reaches, v-). If (y1,y2) lies inside the circle, then
the vehicle only needs to move far enough frém, y») before the procedure above can be
executed. Finally, aperiodicity can be verified as in Renfark

Figure 5 illustrates how the empirical distribution indemmhverges to the desired density. It
shows that this convergence is only slightly slower comgpdrcethe unconstrained case when
wo = 0.3, but there is a strong dependence in the turning speed asshiben this speed is
decreased by a factor of 2. It is worth to mention that in casevhich 0 linear velocity is not

allowed convergence is only slightly slower than the casetirch it is allowed.
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Correlation Coefficient

. . .
600 800 1000 1200
time

Fig. 5. Evolution of the coefficient of correlation for theasmstrained turning case (solid), for the constrainedingricase

with vo = 1 andwy = 0.3 (dots) and for the constrained turning case with= 1 andwy = 0.15 (cross).

C. Example 3

In this example vehicles make use of three beacons in ordeigate. In particular, vehicles
always move straight towards or straight away from one oflibacons. Lef) = R?, V =
{a,b,c} x {—1,1}, wherea,b,c (the position of the beacons) are three pointsRi not in
the same line, and is the uniform probability distribution ovel’. We take f(z,v) to be
f = va(x — vy). Thus, we have three points in the plane that may be eithblesta unstable
nodes. This is an example for which the divergence is not. z&coording to Theorem 5, we
choose

A=n—f-Ving—2v, , (34)

for somen sufficiently large. Note thaf satisfies the hypotheses of Theorem 5, simck and
c are not aligned. The class of reachable densities inclutEsetsatisfyind|V In g|| < Mz™!,

which includes all densities with polinomial decay. We ntitat a uniform7;, is not the only
one that achieves the desired density for such Bor example, it is possible to choo$g such
that

1
Tx(Uﬂ/) = 11V—{vgx{—1,1}}(v) . (35)

This jump pdf is such that jumps to the flows with the same fixaidtare not allowed. Yet, since
AT, still defines an irreducible Markov chain, we can apply Tleeor3 to conclude uniqueness

of the desired pdf and therefore convergence to it.
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Remark5. In [3] it is shown that the same type of objective of optimagacan also be achieved
with a diffusion controller, i.e., a controller that makeseuof brownian motion rather than
Poisson jumps. However, the diffusion technique cannotX¥beneled as easily to more general
vector fields. Indeed, one can verify that a result similaiTteeorem 5 would only be valid

for vector fields that depend exponentially on the conttbl@arameters, which would make a

diffusion controller solution to this last example very ilely.

D. Chemotaxis

Chemotaxis in the bacteriufa. coliis a good example of how the jump control of probability
densities can be used for the optimal distribution of irdlinls. It is remarkable that the expres-
sion for \ in (27) obtained in the optimotaxis example is an affine fiarcof d(Iny)/dt. Hence,
it coincides with simple biochemical models for the tumpglnate of theE. coli; see, for instance,
Alt [2, Equation 4.8]. This author essentially proposed éitestence of a chemical activator for
the locomotion mechanism such that a tumble would occur &awhthe concentration of this
activator would become less than a certain value. The coratem of this activator would jump
to a high value at tumbles and decrease at a rate corresgptadinin (27). A receptor-sensor
mechanism would then regulate the additional generatioth@factivator [this corresponds to
the termv - VIn g(z) in (27)], which would modulate the run length. Though the a&umble
and run in optimotaxis is inspired by chemotaxis, one woubtl mecessarily expect that our
choice of the tumbling rate would lead to control laws thaterable the biochemical models
in bacteria. As a consequence of this fact, our control law lma used to analyze the bacterial

motion and to predict what stationary distribution is ainidthe bacteria.

Let us suppose that bacteria are performing optimotaxist as described in this paper.
Let p(z,v,t) be the spatial density of bacteria and lgtr) be some function related to the
concentration of nutrients at point Suppose also that the bacteria are in a static environment
like a chemostat, which would maintain the level of nutrgecbnstant in time, or that the
consumption of nutrients happens in a timescale that is nslmier than chemotaxis. Given

thatp(z,v,t) converges in total variation (see [3]), we have from [28]ttha

H(t) = —/Q/Vp(x,v,t) In (% + 1ﬂ) dedu(v) — 0 | (36)

2p(z,v,t)
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where H (t) is the Kullback-Leibler divergence betweef, v,¢) and the convex combination
1/2 g(z) + 1/2 p(z,v,t). SinceH(t) > 0 with equality to zero if and only ify(z) = p(z,v,t)
a.e., one can regarH(t) as a cost functional that is being minimized by bacterialnobiaxis
(and, in fact, also by optimotaxis). More specifically, wetio® that what is being maximized
is the expected value of an increasing concave functiog/pf which is a ratio that measures
the concentration of nutrients per density of organismaisThvhat is being maximized here is
not the probability of a bacterium being at the point of maximconcentration of nutrients, but
the average amount of nutrients a bacterium has access to wtegacting with many others
of its kind, which is a biologically meaningful cost for th@gulation of bacteria as a whole.
Interestingly, this effect is achieved as a result of anviadialistic behavior (without direct

interaction among the bacteria), which suggests that searas an evolutionary equilibrium.

With our analysis, we hope to have shed some new lights regattie functionalities of
chemotaxis. Similar conclusions were drawn for predatorshe work of [29]. However, we
point out that further investigation is necessary givert tha conclusions are based on a quite

simplistic model for chemotaxis.

VI. CONCLUSION

A solution to the problem of controlling the probability dgties of a process was provided.
Our solution, which involves a randomized controller thaitshes among different deterministic
modes, is shown to be particularly useful when the obsemagirocess is a fixed but unknown
function of the state. Controllability conditions were iged to determine when such a controller
can enforce a given density to be a stationary density foptbeess. Specially, we were interested
in the goal of making the probability density of the processverge to the observation function.
We discussed potential applications of this theory in treaasf mobile robotics, where it can

be used to solve problems including search, deployment aodtoming.

One challenge to be addressed in the future is to develogrd&sils for systems with limited
controllability such as those with relative degree higheant or equal to one, as discussed in
Remark 4. A second important problem is to define convergestes in a manner that is useful
for both analysis and design. A possible framework is pregidy the theory of Large Deviations
[30]. In addition, the authors believe it would be benefit@explore new applications for their

method in the existing large domain of applications for MarkChain Monte Carlo methods.
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APPENDIX

PROOF OFLEMMA 1

For path-differentiable functiong we define the operator

d
ﬁsﬂ/)(%v) = E@D(S@f%v) . (37)

t=0
In particular, if f is continuous and is continuously differentiable, thef, ¢ = f - V1. We

define a second operator on measurable functions) x V' — R by

Kip(z,v) = )\/ T, (v, v)((x,0") —(z,v)) dv(v') . (38)

\%

Under Assumption 1if), we have from [11, Chap. 7] that := L, + K is theinfinitesimal
generatorof P, i.e.,

lim
t—0

tht— vy W (39)

for all ¢) in the domainD(A) of the operator, which is characterized by all bounded path-
differentiable+) such thatAw is bounded and path-continuous. To prove Lemma 1, we will
extend P, to act as a semigroup of operators 6h(y), wherey is the invariant probability
measure in the lemma. Becaugg A) is dense inL'(u), P defines a strongly continuous
semigroup onL'(u) with generatorA such thatD(A) C D(A) and A = A on D(A) [31].
Using [31, Thm. 2.4], one can proceed as in the proof of [LInThA.8.2] to show that

Ay dpp =0 (40)

QxV
for all v € D(A).

Proof of Lemma 1:

A consequence of the dual ergodic theorem [19, Thm 2.3.6jas ihvariant functions under
P, correspond to the Radon-Nikodym derivative of an invariargasure with respect to the
invariant measure:.. Hence, we have thaty is also an invariant probability measure f6y.
Consequentlyy; := (o + B1y)p and iy := (a2 + B27y) i1 @re also invariant probability measures,
where«; and j3; are positive constants such that+ 5, = 1, i = 1,2, anda; # a,. Define¥y

as the Radon-Nikodym derivative @f, with respect tou;:

o dpy  a + By

= . 41
7 din o+ By “1)
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By the dual ergodic theorem [19, Thm 2.3.6],is invariant under?,, i.e., P,y = 7 p-a.e. In
addition,0 < min(as/a1, B2/01) <7 < max(as/ay, f2/F1) < oo.

By [11, Lemma 7.7.3] and the invariance of we have that

t t S
ste.0) = tetmoyens (= [ Agte) ds) + [ asietnoen (- [ At a)
0 0 0

/ Toe(V, 0)7 (0" 2, 0') dv(v') p-a.e.
V (42)
Taking the derivative int, one can conclude thatly = A5 = 0 and, sincey is bounded,
Ly, K5 € L'(w). From this and the uniform bound @n#, we conclude thaf,In%y, KIny €
L*(p) as well. ThusIny € D(A) and Aln5 = Aln4. Consider the function

H = Alnﬁ d,ug - A’? d,ul . (43)

QOxV QxV

Using the definition ofA, we can expand{ as

H = [@ + )\/ T, (v, v)(Iny(z,v") — Iny(z,v)) dv(v')
axvl 7 v

— Ly = AY! /v T, (v, 0)(Y(z,v") — 3(z,v)) du(v/)] dpiy

ol o afn

However, according to (40y{ = 0. Sincel 4+ Ina — a < 0 with equality only fora = 1, we
conclude from (44) thay(z,v) = 5(z,v") v-a.e. But

’y = _w
B2 — By
implies that alsoy(x,v) = y(z,v’) v-a.e. This proves (12). From the definition of we have

(45)

K~y =0 p-a.e. SinceAy = 0 p-a.e., it follows that alsaC,y = 0 p-a.e. This proves (11) fof.
Using (45), we can extend (11) ta [ |
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